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NONSTEADY HEAT AND MOISTURE TRANSFER IN CAPILLARY-POROUS 

COLLOIDAL BODIES WITH CONVECTIVE DRYING 

B. A. Todorov UDC 66.047.37 

A mathematical model describing the distribution of moisture content in the region 
of a moist state of capillary-porous colloidal bodies is proposed. 

Formulation of the Problem 

The drying of moist capillary-porous colloidal bodies is a typical nonsteady process 
occurring in the presence of transfer-potential gradients. The moisture-transfer potential 
for the given bodies is assumed to be the chemical potential of water vapor as a function of 
the temperature and partial pressure of the vapor. In the hygroscopic region, it may be ex- 
pressed using the temperature and moisture content of the body. Taking this into account, 
the system of differential equations 

Ot av2t § ~ro au (1) 
& C O~ 

OU 
_ Dv~U + D6v~t, (2) 

& 

describing the interrelated phenomena of heat and moisture transfer, was derived in [i]. 
Numerous solutions of this system of equations with different boundary conditions are found 
to be in good agreement with the experimental results of [2-7]. 

For wet bodies, the chemical potential is equal to the potential of free water, i.e., 
it is constant and cannot be used as the moisture-transfer potential. This explains the con- 
siderable deviation in the moisture-content distribution obtained from the solution of Eq. 
(2) from the experimental values in [2-7]. 

A mathematical model derived under the following assumptions is proposed to describe 
the moisture distribution in capillary porous bodies: 

I) the transfer of capillary-bound water is not diffusional; 

2) capillary-bound water is characterized by a density p, which is equal to the mass of 
this water per unit volume of the body; 

3) nonsteady transfer of the moisture occurs under the influence of the combined action 
of the motive forces (pressure and temperature gradients, capillary potential, etc.). It is 
assumed that the resulting flux may be expressed using the rate of transfer Vca p and the 
density p by the equation 
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or equivalently 

k 

Lap = P L a p  = X L,~.~. 
1 

ap--  P~ 
. +  

After substituting the expression for Jcap from Eq. 
equation 

ap + v ~ = O  & 

(3) 

(3) into the mass-conservation 

(4) 

and performing simple manipulations, a differential equation of hyperbolic type is obtained 

o--7- + ~apvV = 0, VTc~p= 0 (5) 

Since convective drying is widely used in practice, it is of interest to solve Eqs. (i) 
and (2) and (5) with boundary conditions of the third kind 

cz (t= - -  t,) - -  ), (vt), - -  (1 - -  0 roO~=po (U, - -  Ue) = 0, (6)  

~zu (Us - -  U~) + O (vU)s + D8 (vt)s == O. (7)  

Numerical Solution of the Model 

The solution of the problem is obtained by the finite-difference method in a rectangular 
two-dimensional grid with I x j points over the spatial coordinates. The two-step Laks-- 
Vendorf scheme with second-order accuracy with respect to the time [3] is used to solve Eq. (5). 

The auxiliary step in the Laks scheme for the given case takes the form 

, # +  + 1 (UTj + U L ,  ;+, + U" U n A~vcap (U~+x UL~ i+,) A~vcaP Un . . . .  ( ,i+2--U73, (8) ta~i+l 4 i]+2 -[- ~--1 1+, 4A i+x 4A 
] . . . . .  

tTn+'-T- 4 n n A1:Vcap n A,v-cap 
~ j - 1  = . (u7~-2 + u,+~ ;-1 + g , j  + uL~  j - 0  - 4a (vn+~ ~-~ - -  U,_~ 1"-0 - -  4a (u~ U~i-z), ( 9 )  

I 

T rn+- '~ ~1  U n~+2j q" U ni+l i+1 q- Unu) A~V cap. U ~ U n Azv cap n = n - -  ( *+2i-- ~1) - -  (Ui+l l+, - -  UT+l i-1), (10)  
u i + u  4 (Ui+l i - 1 +  4A 4A 

+ U n U n U n " ATVcaE" (UT] - -  U7-2]) - -  ATvcap U n n n ' ( ~--I i l l  - -  Ui-1 / -1 ) .  ( i i )  U~+__.,I = (U,_,  i_ ,  -t- ~1 + i - ,  i+,  -}- i-2])-- 4A 4A 

The values of the vector components U defined in this way at fractional n + 1/2 moments 
of time are used in the difference equation, centered with respect to time and space; this 
leads to the basic step for calculatin~ U at the n + i moment 

1 1 1 1' 

n A~Vca p m ~+ ~ -  U n. + T~ A'~Vcap ~rT n+ -~- U n+ T ~  
Un? 1 = U~i - -  ~ i + U  - -  ~-~i ! ~ L~i+I  ~ ~i--~ /" 

2A 2A (12)  

The system in Eqs. (i) and (2) is approximated by the Krank--Nikol'son implicit scheme, 
resulting in the implicit matrix equations 

eo  ,,tn+, + t7% + ,n+, n n ro~ (U~+, U n t7 + '  = t~ + - ~ -  t~ ,+,i ",i+, + t7 +-t, - -  4tf + ' )  + (t~+,i + t , - u  + t,~+, + t'~i_, - -  4t'[~)1 + "--C- - -  '])' 

(13) 

. F o '  ,.,r,n+l Un+l . un+' r,*+' 4 U ~ ' )  + (U'~+~] + U~.._,i + U,5+, + U n 4U'~i) + 
uf~ +t -- u~'i + - 7  ~ + 1 ~  + ~-1i -~ .+~ + ~ . - ~  - -  ~-~ - -  

. tn+, __n+l ~n+l 4 t ~ + t )  n n n _ _  n ( 1 4 )  + 6  {t~++~/" T i--I/" -W!]+l + "i]--I - -  + 6 ( t ,+,  i + t~-ti + t~i+t + tii-t 4t~/)], 

where Fo = aA~/A=; Fo' = DAr/A ~. 

Matrix Eqs. (8)-(12) are stable if the Courant--Friedrichs--Levi condition is satisfied 
[3] 

a ~  ~ a/([VoapiV~). (15) 

Analysis of the stability of the solution of matrix Eqs. (13) and (14) is undertaken 
using the vectorial Fourier mode 

-- It= exp (ik~x + ikv9), 0 n exp (ikxx + ~kvy)]. (16) 
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) , i ' / 8  ' D -7 
Fig. i. Variation in moisture content O (kgl 
kg) and temperature t c (~ of experimental sam- 
ples asa functionof the time z (h) withvarious 
experimental conditions: a) t~ = 47~ t M = 
35~ ~ = 0.43; v~ = 5 m/sec; b) t a = 60~ 
t M = 45~ ~=0.42; v a = 5 m/sec; the con- 
tinuous curves correspond to theory and the 
dashed curves to experiment. 

Using the Fourier mode, a transition matrix G with two eigenvalues gl, ga is obtained 
for Eqs. (13) and (14); gl, g~ may be less than unity. This means that the solution of the 
system of matrix equations must be stable for any values of Fo (Fo'). In fact, however, 
numerical experiment shows the presence of an oscillating solution when Fo (Fo') > 450. 

The solution of matrix Eqs. (13) and (14) is obtained by the method of successive upper 
relaxation using Chebyshev polynomials to accelerate convergence in the early states of the 
iterative process [3] 

t(#+1) i~ . (ph ~(p) ~P)Fo [~+(p) ~(p+i) Ap) _,(p+1)~ 2er~ H(~) 1 ~(~)V (17) 
~: = ~ . - - ~ t  ~o~: + 2 ( l + 2 F @ ~ + ~ i + ' ~ - ' i  + ~ u + , ~ - t  ~ +  C----o ~u  ~ +  t ~i, 

~i/~(P+I) (1 --~u" (P)xl~i/rr(P) ~ ) Fo' .rz(p) ~(p+l) ~(p) l l (p+ l )~  

:top) .(p+~) ,r /~ .+~)  4tl~))] + co~P)Wzj, 

where 

W~j 

(18) 

1 - - 2  FO' 

1 + 2 F o '  

The components of the vectors t and U on the right-hand side of Eqs. 

= 2 2 co (p+I) co(~ 1; co (~) 1 / ( t - - l a~ /  ); for p ~ l  = 1/(1--~mco(P)/4);  

1 - - 2 F o  ~ , Fo  ' ~ 2~ro U ~ )  �9 
V~j ti+w+t~-~j+t~/+~ + 6 i - t - -  C Fo 

l + 2 F o  6i-r  2 ( 1 + 2 F o )  (, ~ ~ ~ _ '  

U~: ~ + Fo' [(U~+,j~ + U~_~i + U~')+~ + UTi-~) + 8 (6+~i ~ + t~_~:~ + 6i+~ ~ + t~5-~ - -  4t~i)]. 
2(1 + 2 Fo') 

(17) and (18) for 
the p + 1 iteration have already been determined and used for additional acceleration of the 
convergence of the iterative process. 

In using Fourier analysis, the eigenvalues of the iterative matrices are determined; 
these are block-matrix eigenvalues 

Fo ak Fo a! 
,ut = I + 2Fo cos--j k l+2Fo cos I ' (19) 

Fo' z~k Fo' ~l 
~u = c o s - -  + cos (20) 

1 + 2 F o '  J 1 + 2 F o '  l 
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Fig. 2. Distribution of the moisture content U (kg/kg) 
with various experimental conditions (Fig. i) in four 
(a, 1-4) and three (b, 1-3) elements of the experimental 
samples. The coefficients of the model: a) D = 6.2" 
i021~ ; Vca p = 7.8'i0-s; ~ = 0.31; C = 2400; Po = 680; 
a 1.6"i0-7; r = 0.25; re -- 2.39'i0J; a = 70; a u = 
1.5"i0-6; ~ = 1.25"I0-3; A = 4"10-s; A~ = 1800; b) D = 
8.7 x 10-*a; Vca_ = 7.5.10-~; ~ = 0.315; C = 2500; 
Po = 680; a = i.~6"i0-~; e = 0.22; re = 2.3'i0~; a = 
71; a u = 2.3'i0-~; 6 = 1.28"i0-s; A = 4"lO-S; Ar = 
1800; continuous curves correspond to theory and dashed 
curves to experiment. 

The maximum eigenvalues of the iterational matrices, which are used to optimize the re- 
f # I 

ICOS@I and Icos~l are equal to unity, that is, laxation parameter, are obtained when 
J 

t 2Fo  
~-- < 1, (21) 

1 + 2 F o  
. 2 Fo '  

~m ~ < I, (22)  
1 +2Fo'  

which proves the convergence of the iterational process. 

The boundary conditions of the third kind are approximated in finite-difference form 
using the method proposed in [5] for convective heat transfer. Following this approach, the 
boundary conditions are written in the form: for the point (i, I) 

1 ,n+ 1 n n ( 
2 F o  ~1,1 = t2,i + tl,~ + , - - - -  

\ 

l t Tn+ 1 n U n u~,l  =U2,1  + 1/2 
2 Fo '  

for the point (2, i) and all the 

1 2 - - 2 B i )  h,1 +2 Bit~+ 2 (1--e)  ro~poA ( U 2 - -  1,1),  U,~ (23) 
2 Fo " X 

( 1  2 _  2Bi,)  U~ .1+ 2 Bi,Uy + 5 (t,~.2 + t ~ + 21~o, 2,1 - -  2t]'.i); (24)  

other surface points 

1 t~+l t ~ t~ ( 1 
Fo 2,1 = 1,1 + 3,1 + 2 t~ .~+  Fo 

1 TTn+l ~ ~ ( 1 
Fo ~,2,1 = U1;1 + U3,1 + 2U~,2 + Fo'  

where Bi = aA/X; Bi' = auA/D. 
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The following stability conditions are imposed on Eqs. (23)-(26): 

4 ( l + B i ) F o ~ l ,  4 ( 1 +  B i ' ) F o ' ~ l ,  
fo r  the  po in t  (2, 1) 

2 (2 § Bi) Fo ~ 1, 2 (2 -I- Bi') Fo' ~ 1. 

These c o n s t r a i n t s  c o n s i d e r a b l y  reduce the e f f i c i e n c y  of  numer ica l  s o l u t i o n .  

for the point (i, i) 

(27) 

(28) 

If the com- 
ponents of the vectors t and U at the boundary of the body are calculated in the iterative 
procedure for any iteration, with a step &T satisfying the stability condition, and the 
matrix Eqs. (13) and (14) are solved with a large time step, the efficiency of solution is 
high, but there is a known loss in accuracy. 

Numerical experiment shows that the loss in accuracy is within limits of 2-3~ for t 
and 0.02 kg/kg for U. This corresponds to the accuracy with which t and U may be measured 
in practice. The accuracy of solution improves with small changes in the parameters of the 
surrounding medium. 

Order of Calculation 

i. When the components of U at the grid points on the surface are less than Uf, but 
larger than Uf inside the body, the vector U is determined explicitly by Eqs. (8)-(12), and 
t by EN. (17). 

2. When the components of U are less than Uf at points on the surface and partially at 
internal grid points, the computational procedure is performed with several steps. From the 
components of t and U determined at the preceding time step, the vectors Vii and Wij are 
formed; Wij is formed as long as Uij ~ U f. In the next time step, P iterations are performed 
with respect to Eqs. (17) and (18), together with the boundary conditions in Eqs. (23)-(26). 
The iterative process for Eqs. (17) and (18) is performed until Uij ~Uf. After the comple- 
tion of the iterative process, the components of the vector U > Uf for the remaining points 
are determined from Eqs. (8)-(12). In the region of the hygroscopic state, the vectors t 
and U are determined from the boundary conditions and the iterative schemes in Eqs. (17) and 
(18) for all the grid points. 

Discussion of the Results 

The temperature and moisture content in beechwood were measured experimentally, with the 
following parameters of the surrounding medium: t a = 50~ and ~ = 0.73, 0.48, 0.37; t a = 60~ 
and ~ = 0.75, 0.57, 0.42; t a = 80~ and ~ = 0.81, 0.63, 0.42. 

Appropriate sealing of the ends of the experimental samples provides conditions for two- 
dimensional water transport in a direction perpendicular to the beechwood grain. The tempera- 
tures ta, TM, and t c are measured by Pt i00 platinum thermoresistors and their values are re- 
corded on the tape diagram of a six-point measuring bridge of accuracy class 0.5. In the 
course of the process, the mean moisture content of the elements corresponding to the pre- 
cisely determined number of grid points is measured by a weight method. 

The elements are cut from a section obtained from the experimental sample after a 
definite amount of drying time. 

The variation in U and t c in two experiments with beechwood samples is shown in Fig. Io 
Two periods of the drying process are observed: one at a constant rate and one at a de- 
creasing rate. In the first period, t c is approximately equal to tM; in the second, T c tends 
asymptotic~lly to t a. The mean square deviation between the theoretical and experimental 
values of U is in the range from • to • kg/kg. 

The time dependence of the moisture content in the same two experiments is shown in 
Fig. 2. The mean square deviation for U in this case is within • kg/kg. 

Solving the inverse problem, a correlational dependence of Vca p on ~ may be obtained 
in the form 

10--(2.5517~+ 4.9586) 
Vcap (29) 

The results obtained permit the conclusion that Eqo (5), together with Eqs. (i) and (2), 
is a mathematical model of the heat and moisture transfer in capillary-porous colloidal 
bodies for the description of the hygroscopic and wet states. 
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NUMERICAL SIMULATION OF PROCESSES IN A SPHERICAL 

. 

COMBUSTION CHAMBER 

A. I. Marchenko and C. S. Romanov UDC 533+539 

A theoretical model of gasdynamic and mechanical processes in a spherical explosion 
chamber is considered. Comparison of numerical results obtained with this model 
with calculated and experimental results of other authors shows good agreement. 

The present study will describe a method for numerical simulation of the processes 
which take place in a spherical explosion chamber by using the equations of the mechanics 
of continuous media without consideration of the differing natures of dissipative effects 
(radiant diffusion, turbulence, etc.) which can play a significant role in real conditions. 
The model to be considered permits description of both gasdynamic processes w~thin a chamber 
caused by expulsion and braking of material from the energy source, and elastic compression 
waves -- expansion of the medium under dynamic loading of the chamber walls at stresses not 
exceeding the strength of the wall material, i.e., for situations of practical interest [i, 
2]. 

The proposed model was used to study processes in an explosion chamber which consisted 
of three spherically symmetric regions: i) a central region 3 cm in diameter (energy source) 
with density 01 = 2.7 g/cm 3 and mass 3.054"102 g, within which an energy of Eo = 7.106'109 J 
is liberated instantaneously corresponding to a specific internal energy of E = 2.327"107 
J/g; 2) an air layer of thickness ~ 2 m with gas density 0o = 1.293 "I0-~ g/cm ~ and pressure 
Po = i atm; 3) amedium surrounding the air cavity (aluminum with density of Pl = 2.7 g/cm s was 
chosen for the chamber wall material). 

Since the problem under study allows similarity transformation of the linear R, and 
time t, scales with the relationships R, ~ E~/3 and t, ~ E~/3, some of the results obtained 
were compared with data of [2] for an explosion of energy Eo = 7.106"10 ~= J in an air cavity 
of radius Ro = 20 m. 

The thermodynamic parameters of the air layer were calculated with a tabular equation of 
state P = P(E, 0), obtained by linear interpolation in logarithmic variables using the data 
of [3]. The media in the first and third regions were described by Tillotson's equations 
[4-6], which are recommended for calculation of high-velocity shocks on metal and plastic 
targets [5], which corresponds to real conditions on the chamber walls. The well-known 
equations of [7, 8], which relate deformation and stresses produced by action of shock wave 
pulses on the chamber walls, were used to consider the mechanical properties of the surround- 
ing medium (chamber walls). 

In describing wave motion in the chamber and walls, strength and other inelastic phenom- 
ena, nonequilibrium properties, and radiation characteristics of the medium will be neglected, 
which, according to [2], is completely justifiable. 
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